
Proceedings of the 8th International CDIO Conference, Queensland University of Technology, Brisbane, July 1 - 4, 2012

CDIO-ORIENTED INVERTED PENDULUM CONTROL PROJECT FOR

UNDERGRADUATE ENGINEERING STUDENTS

John Gallagher and Bill Goodwine

Department of Aerospace & Mechanical Engineering, University of Notre Dame, USA

ABSTRACT

This paper presents the design of an undergraduate pendulum feedback control project. The
project is low-cost, significantly less expensive than commercially-available systems, and the
project based upon it requires, and hence reinforces, substantive understanding of the
physics and control-theoretic aspects of the problem in order for students to complete it.
This paper presents the pedagogical purpose behind the project experience for the students
and also many details of the physical design of the system and the software control system
so that it will be straight-forward to replicate elsewhere. This paper is indented to contribute
to the “CDIO Knowledge Library” to facilitate projects that implement the “design” and
“implement” components of CDIO, with the future goal of extending the scope of the project
to include the “conceive” and “operate” components. In order to accomplish this goal, a
significant portion of this paper must present the technical aspects of the project which is
integral with and shares equal footing with the broader pedagogical goals.

KEYWORDS

Project-based learning, active learning, feedback control.

INTRODUCTION

This paper presents an undergraduate controls project platform and associated project
outline intended to enhance student learning by appropriately requiring them to work though
all the steps necessary to implement a digital feedback controller on a real physical system.
In the form described in this paper, students are given a physically-assembled system and
their task is to design and implement a feedback controller to stabilize the pendulum in
inverted configurations. In order to accomplish that objective, students must be able to write
programs for the microcontroller, perform system identification, use appropriate analysis
tools and insight to design a feedback controller, convert the controller to a discrete-time
controller, write a program to instantiate the controller, download and run the controller and
systematically test and evaluate the performance on the controller. Because the project is
independent of homework and other course materials, it provides an independent context in
which students must master certain elements of the course material in order to successfully
complete.

In the implementation described in this paper, students work in teams, but the project could
also be performed individually. As described in detail subsequently, the system is comprised
of the following components:

• the pendulum, which is actuated by a dc motor with an associated optical encoder,

Proceedings of the 8th International CDIO Conference, Queensland University of Technology, Brisbane, July 1 - 4, 2012

• an H-bridge current supply controlled by a pulse-width modulation input signal,
• a commercially-available microcontroller board, based on the Motorola/Freescale

HC11-series 8-bit microprocessors with a serial port interface, and
• an interface board, which contains the circuitry to interface the microcontroller with

the H-bridge and optical encoder.
Programs executed on the microcontroller are written and compiled on a workstation, and
can be downloaded to the EEPROM on the microcontroller board via a serial port.

It is well-established that active and reflective learners are not well served by traditional
university engineering lectures [1]. As such, there is wide recognition that project-based
experiences enhance both student satisfaction, learning and retention [2]. Active learning is,
of course, an element of the broader framework of the CDIO initiative and this project was
specifically designed with the purpose of the CDIO Initiative and related engineering
education goal in mind.

In the Department of Aerospace and Mechanical Engineering at the University of Notre
Dame, this project has been implemented in AME 30315, Differential Equations, Vibrations
and Control II. This course is required in both the Aerospace Engineering and Mechanical
Engineering Programs. Nominally, students take this course in the spring semester of their
third year; however, if a student has Advanced Placement credit for the first two calculus
courses in their Program, they may take the course during the spring of their second year.
Mechanical Engineering students typically concurrently take EE 20222, Introduction to
Electrical Engineering and Embedded Systems, a significant portion of which considers
programming embedded microprocessors. Hence, the majority of the Mechanical
Engineering students have programming experience relevant to successfully completing the
project and typically third-year Mechanical Engineering students comprise a majority of the
students enrolled in AME 30315. Hence, in the Spring of 2012, the project was assigned as
a group project, with typical groups of two students, one of whom was a Mechanical
Engineering student who had either completed EE 20222 or was concurrently enrolled in it.
In the Spring semester of 2012, AME 30315 had approximately 130 students enrolled and
ten pendulum platforms were constructed and stored in the Stinson-Remick Hall of
Engineering where students would have 24/7 access to the projects. A web page for the
Spring, 2012 implementation of the project was developed to guide the students through the
project [3].

PROJECT DESIGN AND LEARNING OUTCOMES

As indicated previously, the student experience in the project is designed such that a
necessary condition for successful completion of the project is substantive understanding of
system identification and modelling, feedback control analysis and design, embedded
systems programming and post-design validation of the design. The project may be divided
into five sequential steps:

1. an introductory step where students become familiar with the system, including
operating the hardware, compiling programs, downloading the programs to the
microcontroller and executing the programs,

2. system identification where a student-written program controls the system in a stable
mode (with the pendulum hanging “down”) and the step response of the system is
obtained and analysed to determine a second-order transfer function for the system,
which is then modified to represent the pendulum when it is in the unstable
configuration (pointing “up),

3. feedback controller design and analysis using root locus and other analysis
techniques,

4. controller software programming, which requires converting the controller design to a
discrete-time transfer function and implementing it in the C programing language, and

Proceedings of the 8th International CDIO Conference, Queensland University of Technology, Brisbane, July 1 - 4, 2012

5. running the feedback controller on the pendulum in an unstable configuration and
analysing and validating the performance of the controller design.

A detailed description of each of these steps is presented subsequently in this paper.

Student outcomes for the course are enhanced by this project. Specifically, after completing
the project, students will be able to:

1. download a program saved in an S-record format (an .s19 file) to the EEPROM on
the microcontroller board and configure the system to execute the program,

2. write a computer program in the C programming language to execute on the
microcontroller including:

a. programming and handling interrupts (both output-compare and pulse-
accumulator interrupts), and

b. determining the status of microcontroller input pins through bit-masking,
3. perform a system identification and validation procedure on the pendulum by

commanding a step input when then pendulum is in the stable (down) position and
modifying the model obtained to apply to the unstable (up) position of the pendulum,

4. use the model identified to analyze appropriate feedback controller designs, including
accounting for modelling errors such as unmodelled geometric nonlinearities and
friction,

5. design, program and verify a lead compensator to satisfy transient response
specifications for the system, including quantified rise time, settling time and
overshoot,

6. design, program and verify a lag compensator to satisfy steady-state specifications
for the response of the system,

7. design a lead-lag compensator to satisfy transient and steady-state specifications,
with recognition of the trade-offs between them, and

8. operate and validate their controller design.

This project involves a significant number of elements of the CDIO Syllabus [4]. In
particular, in version 2.0 at the second level of detail, this project incorporates

1. system identification, model simplification and model validation incorporates elements
from sections 1.1, 1.2, 1.3, 2.1 and 2.2,

2. controller design incorporates elements from sections 1.1, 1.2, 1.3, 2,1, 2.3 and 4.4,
3. implementation of the design incorporates elements from 2.1-2.4 and 4.5,
4. validation and analysis of performance incorporates elements from 2.1-2.4 and 4.6,

and
5. if implemented in teams with reporting requirements, the project further incorporates

elements from 3.1, 3.2 and 4.7.

STUDENT EXPERIENCE PROJECT DESIGN

This section presents the details of each of the steps the students must perform to complete
the project. It also presents an overview of the technical content necessary to complete the
project.

Introduction and Familiarization with the Pendulum System

As the project is currently implemented, students are not required to design or assemble any
of the physical components of the system. However, some degree of familiarization is
necessary before they can effectively work with the system. In this introductory step,
students are provided with an S-record that commands a square-wave torque to the motor
with a period of approximately ten seconds. In response to this input when in the downward
stable configuration, the pendulum will respond as illustrated in Figure 1. The students are
provided with the C program that generated the S-record that commanded the square-wave

Proceedings of the 8th International CDIO Conference, Queensland University of Technology, Brisbane, July 1 - 4, 2012

torque. In order to record the response, students must modify the program to print the time
and position of the pendulum to the serial port at some specified rate and to capture the data
from the serial port.

System Identification

Analysis and design of the feedback controller requires a differential equation model for the
system, which in standard controls applications is given as a transfer function. From Figure
1, assuming a second-order transfer function of the form

Θ(s)
Τ(s)

=
F

s2 + 2ζωns+ωn
2 (1)

where ωn is the natural frequency, ζ is the damping ratio and F is a scale factor, is
reasonable. Correctly determining the three parameters from the response of the system
requires the students to take into account scaling the transfer function both in the units of the
angular position and in time, and is done by the usual method of the logarithmic decrement
[5].

The graph on the right in Figure 1 is the response to a step input with magnitude -60 [Pu],
where the units are “pulsewidth units” with a range of values from -400 to +400
corresponding respectively to full negative and positive torque commands to the motor from
the current controller. Using the logarithmic decrement approach, numerical values for the
physical parameters are computed as represented by the following transfer function

 Θ(s)

Τ(s)
=

−10.5
s2 + 0.72s+36

. (2)

the step response of this transfer function to an input of magnitude -60 is also plotted on the
right in Figure 1. Students must identify the sources of error in the modelling process, which
include, for example, the actual system response is characterized by Coulomb damping, in
contrast to viscous damping assumed in the logarithmic decrement, and the fact the real
pendulum is nonlinear. Experimentation may validate conclusions with respect to sources of
error.

Figure 1: Square-wave torque response of pendulum in stable configuration (left) and
comparison with system-identification transfer function (right).

Proceedings of the 8th International CDIO Conference, Queensland University of Technology, Brisbane, July 1 - 4, 2012

Controller Design and Analysis

Students must relate the transfer function that describes the pendulum in the stable
configuration to the transfer function when it is in the unstable configuration. Analysis based
on straight-forward mechanics will show that converting the transfer function to represent the
inverted pendulum only requires changing the sign on the last term in the denominator. A
root locus plot illustrating the manner in which the closed-loop poles of the system under
unity feedback vary as the feedback gain is changed is illustrated on the left in Figure 2. The
root locus indicates that with proportional control, the system will only be marginally stable
with unsatisfactory performance. Dynamic compensation is added by means of a lead
compensator with a zero at 𝑠 = −5 and pole at 𝑠 = −20, and the root locus including this
compensation is illustrated on the right in Figure 2. Because the asymptotes are pulled
significantly farther to the left, the feedback system with lead compensation is much more
stable and can have a fast response with less overshoot and a smaller settling time.

Figure 2: Root locus plot for unity feedback (left) and with lead-lag compensation (right).

With lead compensation only, the steady-state error is significant. Hence, a lag compensator
with a pole-zero pair near the origin with a ratio of 100 was used in series with the lead
compensator, which is designed to reduce the steady-state error by a factor of 100. The lag
compensator is also included on the plot on the right in Figure 2 and adds the loop structure
near the origin. Because the pole created by the lag compensator is near the zero, the effect
of the lag compensation on the transient response is greatly attenuated. With such lead-lag
compensation, the block diagram for the system is illustrated in Figure 1.

Figure 3: Block diagram for feedback pendulum system.

From the root locus, selecting a gain for the unity feedback system with a value of 40 places
the four poles of the system at approximately 𝑠 = −7 ± 10.5𝑖 and 𝑠 = −3.4 ± 2.6𝑖 and with
two real zeros at 𝑠 = −2 and 𝑠 = −5. The theoretical step response is illustrated on the left in
Figure 4.

−40
s+1/50

s+2 s+5 −10.5
2s+20 s +0.72s−36

+

−

θ(s)R(s)

Proceedings of the 8th International CDIO Conference, Queensland University of Technology, Brisbane, July 1 - 4, 2012

Figure 4: Step response of the system, theoretical (left) and actual system (right).

Controller Implementation in Software

In order to implement the controller design in a digital microprocessor, the representation of
the compensator in continuous time must be converted to discrete time. Representation of
discrete-time engineering systems and control thereof is a well-developed subject (see, for
example [6], [7]). However generally for aerospace and mechanical engineering students,
modelling in continuous time is more natural and the recommended approach in this paper is
to design the controller in continuous time and then to convert the controller to an appropriate
digital form when it is implemented in a program for the microcontroller. A relatively straight-
forward method to do this is the so-called Tustin’s method [8], which is based on the
trapezoid integration method, where the relationship between the continuous time
independent variable in the frequency domain, s, and the discrete-time independent variable,
z, is given by

s = 2

T
1− z−1

1+ z−1
"

#
$

%

&
' (3)

where T is the discrete time step. In continuous time multiplication by s represents
differentiation and in discrete time multiplication by z represents a shift to the next step in
discrete time, i.e.,

 zθ(nT) =θ((n+1)T). (4)

Thus, for example, for a lead-lag compensator which takes the error signal and computes the
input torque of the form

C(s) = k s+ 2
s+1/ 50
!

"
#

$

%
&
s+ 5
s+ 20
!

"
#

$

%
& (5)

if τ (nT) is the control torque at time t = nT then using Eqns. (4) and (5) and setting
T =1/ 20 , the control torque at the next time step may be computed by by

Proceedings of the 8th International CDIO Conference, Queensland University of Technology, Brisbane, July 1 - 4, 2012

τ t +T() =

−3148e t +T()+ 5297e t()− 2216e t −T()+13300τ t()+3300τ t −T()
10000

 (6)

where the units for the torque are in pulsewidth-units [Pu], the units for the error function,
𝑒 𝑡 , are [deg]x100 and the equation has been scaled by a factor of 10,000 because the
processor is limited to integer arithmetic

Validation

Once the controller is programmed and executed, students must validate their design. The
pole locations for the closed-loop system should predict system response. Students must
compare the response predicted by both theory and simulation to the system response and
explain any significant variations. Because of the geometric nonlinearities in the system, the
model used in the design is accurate only for angles where sin 𝜃 ≈ 𝜃, which is, of course, for
small values of the angle. Students must validate this fact by attempting to stabilize the
pendulum at angles far from zero, recording and presenting the response and explaining
deviations from the theoretically-predicted performance.

The actual step response of the closed-loop system with the controller is illustrated on the
right in Figure 4. Comparing the two step responses in Figure 4 indicates the step response
of the real system has more overshoot, less damping and a somewhat higher natural
frequency than the response of the mathematical model. Students are required to
experiment with the system to determine the source of modelling errors.

PROJECT PHYSICAL DESIGN

A photograph of the system with some of the components labelled appears in
Figure 5. The physical components of the pendulum can be grouped into two sections: the
mechanical and the electrical. All of the components are necessary to build the pendulum are
listed in the bill of materials [9].

Mechanical Components

The pendulum itself consists of an arm made of a thin steel rod with a rubber mass attached
at the end. The arm is attached directly to the shaft of a small 12V DC brushed motor using
a jaw shaft coupler. The motor has a 500-count encoder attached, which is used for position
feedback. The encoder also has a ‘Z’ channel, which can be used to determine the absolute
position of the pendulum arm. The rotational motion of the arm is limited on either side by
rubber stops which allow the pendulum a total range of motion of about 110°. The shaft has
two strips of reflective material which align with an infrared emitter when the arm is pushed
against the two hard stops. A phototransistor senses the reflected light, allowing the software
to recognize when the pendulum is in the limit position.

The assembly of the motor and arm are mounted to a polycarbonate base, as are the
electrical boards. The aluminium frame above the base allows the entire frame to be turned
upside down. Thus the pendulum can be easily changed from inverted to non-inverted, which
facilitates system identification, because system identification is best performed by analyzing
the naturally stable non-inverted pendulum. Part and assembly drawings are provided for
the frame and base [9].

Proceedings of the 8th International CDIO Conference, Queensland University of Technology, Brisbane, July 1 - 4, 2012

Figure 5: Photograph of pendulum system.

Electrical Components

A schematic of the basic layout of the electrical components is provided in Figure 6. More
detailed wiring diagrams, such as would be needed to construct a pendulum, are provided as
well [9]. Most of the electronic components are located either on the commercially available
microcontroller board, or on the interface board designed specifically for this pendulum
project. The microcontroller, a MicroStamp11 from Technological Arts, uses a
Motorola/Freescale 68HC11 microprocessor, which was for many years one of the most
commonly used in industry. The microprocessor has very limited capability, but is
correspondingly inexpensive; hence, it reflects an industrial reality of using limited capability
where it makes good design sense.

The controller receives position feedback from the encoder via a decoder chip on the
interface board, which transforms the two-channel encoder output into a pulse and direction
signal, which is simpler for the controller to decipher. The controller uses the feedback to
calculate the necessary torque to output, and generates a pulse-width modulated (PWM)
signal. This signal is sent to an H-bridge which switches the current to the motor on and off
at the proper intervals to provide the torque commanded. The MicroStamp11 also has a
serial port which is used to download programs to the controller, and can be used to print out
any variables or other desired information to a terminal on the connected computer.

The interface board also features test points for all of major I/O on the controller, which
facilitates debugging and analysis of the entire project using a logic analyzer or oscilloscope.
Also on the interface board is a set buttons which can be accessed by the microcontroller,
and can be used for tasks such as varying the target position or gains without recompiling
and downloading the program.

Motor

Pendulum Arm

Encoder

Microprocessor

H-Bridge

Interface Board

Proceedings of the 8th International CDIO Conference, Queensland University of Technology, Brisbane, July 1 - 4, 2012

Figure 6: Pendulum system electrical components schematic.

CONTROL SOFTWARE DESIGN

For the student project, a framework code is provided with most of the functionality
necessary already programmed [10]. The students must then modify that code to perform
the system identification, and then to implement their controller.

Control Code

The code provided to the students, diagramed in Figure 7, is written in C, and has two major
parts: initialization, and then a continuous control loop. The code first performs hardware
initialization, and then waits for the pendulum to be moved through absolute zero by the user,
so that the absolute position of the pendulum can be determined. Once this done, the code
can track the absolute position by incrementing a variable each time a pulse is received from
the decoder chip. Each pulse triggers an input capture interrupt on the HC11, and the
interrupt handler polls the direction signal from the decoder to determine whether to
increment the position variable up or down.

Once this initialization is performed, the program loops continuously at a frequency of 20Hz.
In this 20Hz loop, the error between the current and desired positions of the pendulum is
calculated, and then the torque needed is calculated. The calculation of the torque using the
error is not provided to the students. The value of torque is then used to set the PWM
percentage, by calculating the number of clock cycles the signal must remain high, and how
many it must remain low. The actual signal is set by an output compare interrupt. Each time
this interrupt is received, it toggles the PWM pin on the controller, and sets the next interrupt

I/O SUMMARY:
PA0 Rotational Limit
PA1 Decoder Direction Input
PA2 Encoder Channel I (top)
PA3 H-Bridge Fault Status
PA4 Spare
PA5 H-Bridge PWM1 Control
PA6 SPARE (output only)
PA7 Decoder Clock Input
PD0 Serial RX Input (NC)
PD1 Serial Out to LCD 9600 Baud
PD2 Left/Right Status LEDs
PD3 Center Pushbutton
PD4 UP Pushbutton
PD5 DOWN Pushbutton
XIRQ Status 1 Fault
IRQ Status 2 Fault

REVISION HISTORY
A - CAN'T REMEMBER
B - ADDED DECODER LS7084 10/19/06
C - ADDED INPUT/OUTPUT DESCRIPTIONS
D - CORRECTED TDC RESPONSE 3-30-09
E - ADDED LOGIC ANALYZER TEST POINTS
F - REMOVED PA6 LIMIT SWITCH ENABLE
G - ADDED INTERRUPT JUMPER BLOCK
H - CHANGED H-BRIDGE TYPE

T.D.C.*

*Top Dead Center

LIMIT

Proceedings of the 8th International CDIO Conference, Queensland University of Technology, Brisbane, July 1 - 4, 2012

to happen after the appropriate number of counts. After the PWM percentage is calculated,
the current position and commanded torque are printed over the serial port, and then
program waits to begin the next loop.

Figure 7: Flowchart of control program code.

There are two interrupts that are enabled and handled. One is an output compare interrupt
that is used for the PWM signal (programmed as OC3 in the current implementation). The
other is a pulse-accumulator interrupt that is triggered each time an edge is encountered on
the encoder (programmed as the PAI interrupt in the current implementation). The C
compiler used for this project is an open source and cross-platform port of Gnu Compiler
Chain (GCC) for the 68HC11 [11].

PRELIMINARY ASSESSSMENT

As of this writing, formal and quantified assessment data regarding the effect of participation
in the project on class performance (for example on the final exam) is not available.
However, many student hours have been dedicated to the project and indirect assessment
based on interaction with students has been obtained.

The main positive message is that the project does help elucidate the “bigger picture”
aspects of control. As an example, many students were wondering where to “program the
transfer function” they determined for the pendulum. In fact, that transfer function is used as
part of the analysis in the design of the controller, but ultimately the microcontroller only
reads the angle, computes the torque and sets the torque. The purpose of determining the
pendulum transfer function was to design a controller with predictable performance, but the

Calculate error

Calculate torque

Set torque

Print variables over
serial port

Wait to
execute

next
loop

Hardware Initialization

Reset

Wait for pendulum to be
moved through vertical

Set timer to
interrupt at
next switch

Return

Toggle
PWM pin

PWM Interrupt

Return

Encoder
Interrupt

Poll direction
signal

Increment
position
variable

Proceedings of the 8th International CDIO Conference, Queensland University of Technology, Brisbane, July 1 - 4, 2012

physical pendulum takes care of its own dynamics, of course, and does not need a transfer
function programmed anywhere in the physical system.

There were two negative components to students’ responses. First, as indicated previously,
only half of the class was proficient in programming in C, which was the language used to
program the microcontroller. This was addressed by assigning teams for the projects and
ensuring that at least one member of the team had the required programming background.
However, the students felt it was difficult to equitably share the workload with this disparity in
skills. Another issue is that the project was due on the last day of classes because the
control theory material is typically covered near the end of the semester. Student workload
increases dramatically near the end of the semester, and in future years the control theory
material will be presented sooner so that the students may finish the project earlier.

CONCLUSIONS AND FUTURE WORK

This paper presented the physical and software design of an inverted pendulum project for
undergraduate engineering students. The design of the project is also presented, outlining
the student experience and pedagogical aspects of the project. Assessment of the degree to
which students achieve the desired project outcomes will be available after final exams at the
University of Notre Dame in the Spring of 2012.

The authors would like to acknowledge the assistance of Mr. Greg Brownell, Microprocessor
Technician in the Department of Aerospace and Mechanical Engineering at the University of
Notre Dame, who designed most of the physical aspects of the system. Additionally, the
authors would like to acknowledge the assistance of Raymond LeGrand, Blair Rasmus and
Derek Wolf, undergraduate students in the Department of Aerospace and Mechanical
Engineering at the University of Notre Dame, who contributed significantly to the software
and control algorithm development of the system. Finally, the authors would like to
acknowledge the financial support of the Department of Aerospace and Mechanical
Engineering at the University of Notre Dame.

REFERENCES

[1] Felder, R.M. and Silverman, L.K., “Learning and Teaching Styles: In Engineering Education”,

Engineering Education, Vol. 78, No. 7, 1988, pp674-681.

[2] Meyers, C. and Jones, T.B., Promoting Active Learning. Strategies for the College Classroom.

Jossey-Bass, Inc., 1993.

[3] http://controls.ame.nd.edu/mediawiki/index.php/Pendulum_Project

[4] Crawley, E.F., Malmqvist, J., Lucas, W.A., Brodeur, D.R., “The CDIO Syllabus v2.0: An

Updated Statement of Goals for Engineering Education” Proceedings of the 7th International
CDIO Conference, Technical University of Denmark, http://www.cdio.org/framework-
benefits/cdio-syllabus, 2011.

[5] Bill Goodwine, Engineering Differential Equations, Springer, 2010.

[6] Franklin, G.F., Powell, J.D, and Workman, M., Digital Control of Dynamic Systems, Pearson

Eduction, Third Edition, 2005.

[7] Ogata, K., Discrete-Time Control Systems, Prentice Hall, Second Edition, 1995.

Proceedings of the 8th International CDIO Conference, Queensland University of Technology, Brisbane, July 1 - 4, 2012

[8] Franklin, G.F., Powell, J.D, and Emami-Naeini, A., Feedback Control of Dynamic Systems,
Prentice Hall, Sixth Edition, 2009.

[9] Bill of Materials: http://controls.ame.nd.edu/courses/ame30315/pendulum/parts_list.pdf
 Base Drawing: http://controls.ame.nd.edu/courses/ame30315/pendulum/base_drawing.pdf
 Frame Drawing: http://controls.ame.nd.edu/courses/ame30315/pendulum/frame_drawing.pdf
 Detailed Schematic 1: http://controls.ame.nd.edu/courses/ame30315/pendulum/interface1.pdf
 Detailed Schematic 2: http://controls.ame.nd.edu/courses/ame30315/pendulum/interface2.pdf
 Detailed Schematic 3: http://controls.ame.nd.edu/courses/ame30315/pendulum/interface3.pdf

[10] Provided Code: http://controls.ame.nd.edu/courses/ame30315/pendulum/code/

StudentCode.c, serial.c, vectors.c, mc.h and hc11.h are necessary to compile the baseline
code. The file memory.x is specific to the gcc compiler.

[11] http://www.gnu.org/software/m68hc11/m68hc11_gcc.html

Biographical Information

John Gallagher is an undergraduate at the University of Notre Dame. He plans to graduate
in May of 2012 with a B.A. in Philosophy and a B.S. in Mechanical Engineering. He is a
member of Tau Beta Pi Engineering Honor Society and Pi Tau Sigma Mechanical
Engineering Honor Society.

Bill Goodwine is an Associate Professor in the Department of Aerospace and Mechanical
Engineering at the University of Notre Dame. He received his M.S. and Ph.D. degrees in
Applied Mechanics from the California Institute of Technology and has been the recipient of a
U.S. National Science Foundation CAREER award. He has been awarded teaching awards
from his department, college, university and ASEE section. His teaching and research
focuses on dynamical systems and control.

Corresponding author
Dr. Bill Goodwine
365B Fitzpatrick Hall of Engineering
University of Notre Dame
Notre Dame, IN USA 46556
1-574-631-3283
bill@controls.ame.nd.edu

