

Aerospace Engineering Design Symposium 2013

When? → Friday, April 19, 2013, 8:00 am – 4:00 pm.

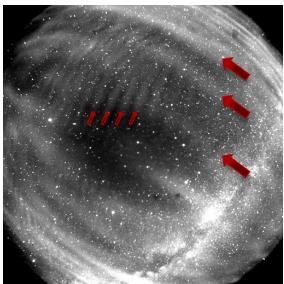
Where? → Discovery Learning Center (DLC), <u>http://engineering.colorado.edu/dlc/</u>; <u>http://www.colorado.edu/campusmap/map.html?bldg=DLC</u>

Questions? → <u>patti.gassaway@colorado.edu</u>, <u>claire.yang@colorado.edu</u>

* Graduate Projects

8:00 am	Registration				
8:30 am - Welcome by Chair Penina Axelrad					
Message					
	Presentations				
	TEAM	Sponsor/s			
8:45 am	ACES	CU-AES			
9:00 am	LEOPARD	Lockheed Martin			
9:15 am	LoCELS	BALL Aerospace			
9:30 am	TRACSat	Surrey			
9:45 am	TREADS	NASA-JPL			
10:00 am	Xhab*	NASA-NSGF			
10:15 am	MinXSS*	LASP/NSF/NASA			
~10:30 am Coffee Break					
11:00 am	GLADYADR	Escape Dynamics			
11:15 am	SCUA	CU-RECUV			
11:30 am	Dream Chaser*	Sierra Nevada Corp			
11:45 am	Hyperion*	Boeing			
12:00 pm	CUGAR	Boeing/AES			
12:15 pm	FROS-D	CU-AES			
12:30 pm	Ice SPEAR	CU-AES			
12:45 pm	HYSOR*	ULA			
~1:00pm Message					
~1:10 pm Lunch and Poster Session					
4:00 pm	Adjourn				

Registration form is available from http://aeroprojects.colorado.edu/


Project	Explanation of Acronym	Brief Description
Name	(Sponsor)	
ACES	Aural Camera for Exploring Space	Develop a ground-based imaging camera system with thermal control for capturing, transferring, and constructing images of near- infrared wavelengths in the night sky
CUGAR	CU Green Aircraft Research	Design a serial hybrid gas-electric propulsion system for integration into a UAV-sized airframe.
Dream Chaser	Lífting Body Vehicle	Provide engineering, management, and services in support of the conceptual development for the SNC Dream Chaser cockpit, displays and seating
FROS-D	Free Standing Receiver of Snow Depth	Design a reliable and cost effective unit that measures snow depth
GLADYADR	Glídíng Attítude Dynamics and Deployment Research	Design, simulate, test, and verify the stability of a 1/10 Escape Dynamics spacecraft prototype
Hyperion	UAV	Design and development of a blended wing body aircraft
HYSOR	Hybrid Sounding Rocket	Design, test and launch a hybrid rocket to deliver a 2 kg payload to 10 km
Ice SPEAR	Ice Surface Penetration for Arctic Research	An autonomous system that can be deployed in the Arctic to penetrate new growth brine ice and deploy representative sensors 10m under the ice surface
LEOPARD	Low Earth Orbit Project for the Acquisition and Recovery of Debris	Develop a debris capture system capable of capturing 2 objects in sequence representative of a piece of tracked debris found in LEO
LoCELS	Low Cost Exploration Landing System	Create an economical method for delivering small payloads to the surface of the Moon
MinXSS	Míníature X-ray Solar Spectrometer	A sun pointing 3U CubeSat which will measure solar emission and transmit and store the data
SCUA	Small Combined Unmanned Aircraft	A box wing UAS capable of flying to a location as an assembly of units, that demonstrate the ability to separate into small assemblies
TRACSat	Target Recognition and Acquisition Cube Sat	A three degree of freedom real-time control system for a cold-gas propulsion unit
TREADS	mulTiple RovEr Acquisition, Deployment, and Storage	Investigate the feasibility of using a multi wheeled vehicle robotic system
Xhab	eXploration Habitat	A remotely operable biogenerative food system for long duration space missions.

Auroral Camera for Exploring Space

Goal: ACES will design, build, and verify a groundbased imaging camera system with thermal control for capturing, transferring, and constructing images of near-infrared wavelengths in the night sky.

Objective: To identify hydroxyl emission and gravity waves in the night sky within 780nm to 1000nm wavelengths while maintaining an image sensor operating temperature of 0°C or lower.

ACES Team: Ian Andrze Conrad Sch

Aeros

lan Andrzejczak Conrad Schmidt Katie Brissenden Tyson Sparks

Matt Hegarty Ben Weingarten Karla Rosario Hannah Williams

Customer: Prof. Jeffrey Thayer

Advisor: Prof. Scott Palo

Team Samantha Archambault Gautham Gopakumar Jarred Langhals Elizabeth Notary Alexander Smith Chelsea Welch KatieRae Williamson Jonathan Wu

> **PAB Advisor** Dr. Scott Palo

Low Earth OrbitProject for the Acquisition and Recovery of Debris

LEOPARD Lockheed Martin and Senior Design heritage project that will design, build, and test a debris capture system capable of capturing two objects in sequence representative of a piece of tracked debris that can be found low earth orbit.

Main Objectives & Design

- Capture debris in Size range: 14 [cm] – 40 [cm] Mass range: 1.2 [kg] – 5 [kg]
- 2) Designed to: capture off-nominal incoming rajectories
- 3) Bristles: passively slow and secure debris

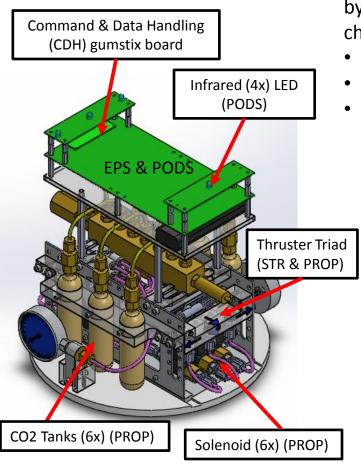
Customer: Lockheed Martin Sponsor: Barbara Bicknell Proj. Advisor: Jeffrey Weber

LoCELS

Low Cost Exploration Landing System

Amanda Kuker Matt Gosche Nicholas Mati Scott Leipprandt David Reid Adam Clarke Hyun Choi Customer: Tim Flora – Ball Aerospace Project Advisor: Joe Tanner - CU

The LoCELS project is focused on creating an <u>economical method</u> for delivering small ruggedized payloads to the surface of the Moon. LoCELS is designed to be carried as a <u>secondary payload on the Orion Vehicle</u>. The system uses <u>deployable composite struts</u> to cushion the impact of an uncontrolled drop from lunar orbit. The <u>payload is suspended</u> in the center of an aluminum structure which is designed to protect the payload during a hard landing.


The goal of LoCELS project is to design a <u>full scale</u> lunar lander prototype using <u>space applicable materials</u> for impact testing on earth. The lander prototype will be capable of carrying <u>a 5 kg mass payload</u>, while <u>limiting</u> <u>the g-load</u> on that payload to under 100 g's.

Objectives:

- 1. Design, construct, and test a lunar lander prototype.
 - 2. Develop landing mechanism that allows the payload to survive a hard impact.
 - 3. Develop and electrical system to record data during impact testing.
 - 4. Learn and experience engineering design processes guided by project milestones.

TRACSat: Target <u>Recognition and Acquisition Cube Sat</u>

Mission Statement: The TRACSat project encompasses the design, integration and test of a three degree of freedom real-time control system for a cold-gas propulsion unit that will maneuver across a low-friction Earth based test environment then perform station keeping at a commanded location to mimic proximity operations of on orbit nanosatellites.

A vehicle maneuver to a commanded position will be performed by translational and rotational planar motion which will be used to characterize:

- Propellant Consumption
- Power Dissipation
- Time Duration of Maneuver

Defined Systems

Guidance, Navigation and Control (GNC)

- Simulink Modeled Controller <u>Propulsion (PROP)</u>
- Cold Gas System CO2

Structures (STR)

- Aluminum 6061 and Acrylic Software (SW)
- Onboard Data processing
- Wireless Command and Data Downlink
 Power (EPS)
- Onboard battery and power system <u>Position Orientation and Determination</u> <u>System (PODS)</u>
- Inertial Measurement Unit
- Infrared LEDs

Performance Requirements

- Translate 0.50 meters
- Pointing Accuracy: ±2.5° from defined body fixed sensor axis
- Position Accuracy: 2.5 radius from commanded position
- Maneuver Duration: < 10 minutes
- Station Keeping: 30 seconds

STOR

CAMPBELI

MELETYAN

TREADS

GOAL:

Investigate the feasibility of conducting unmanned planetary exploration using a multivehicle system consisting of a Mother Rover, two Child Rovers, and a Ground Station.

OBJECTIVES:

RGH

Design, fabricate, and test a new Mother Rover capable of:

- Separately storing two Child Rovers and their collected samples
- Driving to commanded locations of interest
- Deploying and recovering two Child Rovers via a retractable ramp
- Calculating the attitude and position of the Child Rovers prior to docking

Team Members:

Steven Ramm, Andrew Tsoi, Ed Meletyan, Brandon Campbell, Nick Stohl, Abraham Vanderburg, Stephen Hannan, Ted Maritz

Sponsor:

Barbara Streiffert, Jet Propulsion Laboratory (JPL)

Advisor:

Joe Tanner, University of Colorado at Boulder, Aerospace Engineering Sciences

eXploration Habitat: Remote Plant Food Production Capability

Rohit Dewani, Christine Fanchiang, Heather Hava, Keira Havens, Jordan Holquist, Emily Howard, Pileun Kim, Huy Le, Elizabeth Lombardi, Scott Mishra, Karuna Raja Reddy, Tim Villabona, Daniel Zukowski,

Advisors: Joe Tanner, Nikolaus Correll

University of Colorado, Boulder, CO

Objective

Develop a <u>remotely operable</u> bioregenerative food system that provides <u>plant production</u> capabilities for long duration space missions

Graphical User Interface

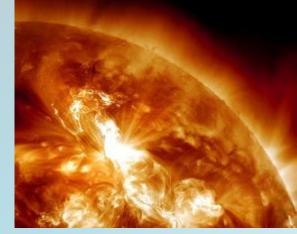
NAS

Plant Development

Robotic Manipulator

DELIVERY: MAY 2013 FOOD PRODUCTION IN SPACE IS A *CRITICAL* NEED FOR LONG-DURATION SPACE MISSIONS

Product Design

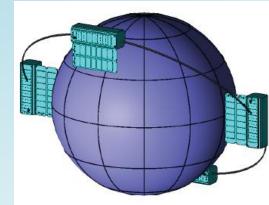


Goal: To design, build, and test a sun pointing 3U CubeSat

and transmit and store the data to further scientific

(10cm x10cm x30cm) which will measure solar emission data

Miniature X-ray Solar Spectrometer



Courtesy of AP

O L

understanding

Science: To better understand the solar irradiance energy distribution of solar flare soft X-ray (SXR) emission and its impact on Earth's ionosphere, thermosphere, and mesosphere

LABORATORY FOR ATMOSPHERIC AND SPACE PHYSICS UNIVERSITY OF COLORADO AT BOULDER

The Team:	11 graduate studen	ts in ASEN and ECEE
PM:	Sam Liner	
SE:	Matt Carton	
Advisors:	Dr. Xinlin Li, Dr. Scott Palo	
PI:	Dr. Tom Woods	
Customer:	LASP	

GLADYADR

GLiding Attitude DYnamics And Deployment Research

Customer: Escape Dynamics

Background: Customer is developing reusable launch vehicle incorporating the use of microwave energy beamed from the ground to deliver payloads into LEO.

Goal & Requirements: The goal of GLADYADR is to design, simulate, test, and verify the **stability** of a 1/10 Escape Dynamics spacecraft prototype.

Requirement	Description	
0.PRJ.1	A 1/72 spacecraft replica shall verify Autodesk 360 virtual wind tunnel predictions for lift over drag ratio, stability, and pitching moment values.	
0.PRJ.2	The 1/10 spacecraft replica shall be geometrically and spatially consistent to customer components of the spacecraft.	
0.PRJ.3	0.PRJ.3 The 1/10 spacecraft replica shall be deployed at conditions that are defined by steady gliding flight.	
0.PRJ.4	The 1/10 spacecraft replica shall obtain a 15 degrees pitch and 0 degrees roll attitude during gliding flight.	
0.PRJ.5	The 1/10 spacecraft replica shall maintain roll and pitch attitude in gliding flight for a minimum duration of 6.4 seconds.	

SCUA

Small Combined Unmanned Aircraft

Customer: Dr. Brian Argrow

Design Team:

Grant Boerhave Dominique Gaudyn Garrett Hennig Jennifer Milliken Cameron Trussell Jacob Varhus Matthew Zeigler **Goal:** To create **box wing** UAS units capable of flying to a location as an **assembly of units**, that demonstrate the ability to **separate** into small assemblies, and exhibit equal and independent **performance** capabilities.

"Eagle Owl" box wing concept by Matt Osborne

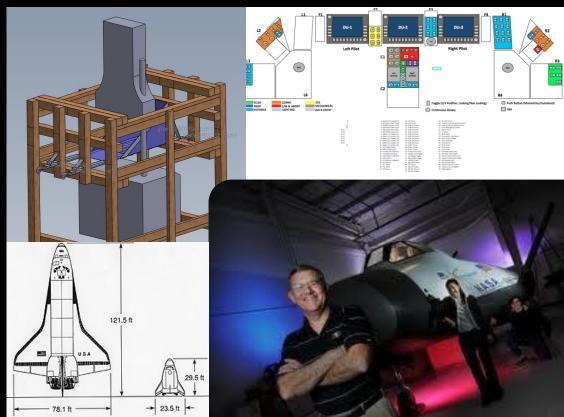
Aircraft connected at wingtips for: Modular alternative to "Mother-Ship" Increased loiter time Increased efficiency

Future Applications: Communication Reconnaissance Weather measurement

Dream Chaser

Copp, B., Gleaves, A., Gonzalez, S., Green, D., Lawry, M., Logan, E., Oxenbury, J., Robinson, M., Williams, A.

Mission Statement:

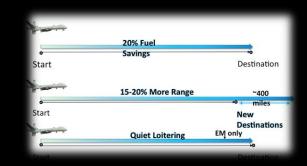

"This project shall provide engineering, management, and services in support of the conceptual development for the SNC Dream Chaser cockpit, displays and seating."

Objectives:

Cockpit Design Control Placement/Readability Control Panel Dimensions Seating Design Traditional Pilot Seat Cloth Crew Seat Load Testing Results Human Factors Tests Cockpit Functionality Ingress/Egress

Advisors:

Col. Jim Voss, CU Ken Stroud, SNC



BOEING

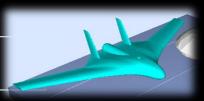
Analysis

HYPERION's Goals align with NASA's 2030 reductions in:

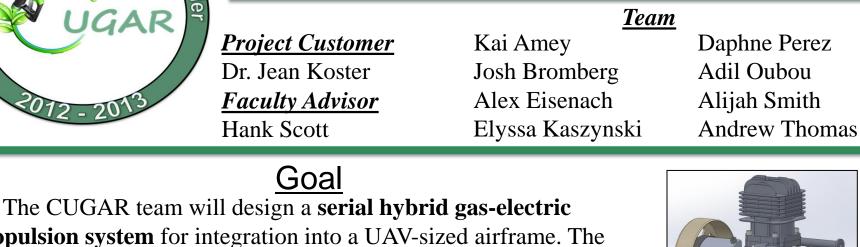
- Emissions
 - **Fuel Consumption**
- Noise

THROUGH THESE NOVEL TECHNOLOGIES:

- BLENDED WING BODY DESIGN
- LIGHT WEIGHT CARBON FIBER STRUCTURE
- HYBRID GAS-ELECTRIC PROPULSION SYSTEM

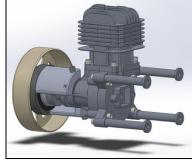


Manufacturing


HYPERION

CUGAR CU Green Aircraft Research

propulsion system for integration into a UAV-sized airframe. The system will **maintain the onboard battery state of charge** and demonstrate **electric takeoff and landing** capabilities.

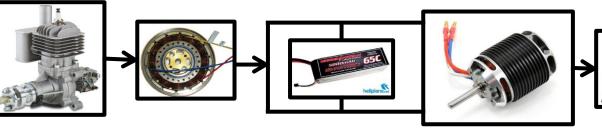

Alternator

Capabilities

All-electric takeoff/landing capability

In-flight recharging

Gas Engine



Benefits

Reduces noise and harmful emissions

Addresses NASA Environmentally Responsible Aviation (ERA) goals

Electric Motor

Battery

Serial Hybrid Architecture

Propeller

FROS-D FREE STANDING RECEIVER OF SNOW DEPTH

Goal: Design a reliable and cost-effective unit that measures snow depth. The system receives GPS signals, analyzes and processes the data using a provided algorithm, and sends the calculated snow depth to an offsite location.

Objectives:

The devise shall -

- Autonomously power itself for a year
- Survive a temperature range from -40°C to 40°C
- Withstand 44 m/s (100 mph) winds
- Transmit height wirelessly 30 m
- Cost less than \$1500

Jake Adams Umair Khan Hamad Al Kaabi Mackenzie Miller

Sabre Brill Josh Smith

l Robert Even h Mary Whitney

Customer:

Dr. Dennis Akos

Dr. Staffan Backen

Advisor:

Dr. Sedat Biringen

Alec Kucala

ICE SPEAR

Ice Surface Penetration Experiment for Arctic Research

Customer: CCAR – Colorado Center for Astrodynamics Research

Team: Christopher Allison Jordan Dickard Isaac Hayden Jan Van Zeghbroeck Chris Taylor Elise Kowalski Jordan Gomez Matt Paley

Goal:

Design, build, and test an autonomous system that can be deployed in the Arctic to penetrate new growth brine ice and deploy representative sensors 10m under the ice surface.

Objectives:

Surviving an airdrop landing, penetrating the ice to allow for representative sensor deployment, collecting data, and relaying that information 10 km for analysis.

Mission

 Design, test and launch a hybrid rocket to deliver a 2 kg payload to 10 km

Objectives

- Deliver a flight
 ready system by
 June 2013 with a
 launch target of
 Spring 2014
- Kick-start a hybrid rocketry program at CU

Team Members

Customer

Dr. Lakshmi

Kantha

Bryce Schaefer Brian Kohler Chris Webber Collin Bezrouk Brian Michels Jack Mills Lance Markovchick Tyler Mixa Thomas Snow

www.youtube.com/user/hysorofficial Hysor.wordpress.com

Thrust	1400 lbs
MEOP	2000 psi
Weight	135 lbs
Height	9 ft
Fuel	НТРВ
Oxidizer	N ₂ O
Burn Time	30 sec